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Complex dynamics of a spiral tip in the presence of an extrinsic local modulation
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With a generic model excitable system, we have investigated the spatio-temporal dynamics of a spiral tip in
the presence of an extrinsiclocalizedperiodic modulation. The tip of a modulated spiral does exhibit a variety
of different trajectories depending on the strength and the frequency of the modulation. Its motion can be
quasiperiodic on a 2-torus, quasiperiodic or mode locked on a 3-torus, or fully chaotic. Various bifurcations,
including hard Hopf bifurcations and saddle-node bifurcations at strong resonances and period-doubling bifur-
cations of a mode-locked 3-torus, are revealed. In particular, the phenomenon of the period-doubling cascade
of a resonant spiral tip trajectory is reported.

PACS number~s!: 05.45.Ac, 82.40.Ck, 82.20.Wt, 82.40.Bj
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I. INTRODUCTION

Rotating spiral waves are ubiquitous in nature and h
long elicited the attention of researchers in a variety of d
ferent disciplines, including physics@1–4#, chemistry@5–7#,
and biology@8–10#. Among others, of particular interest ha
been the spatiotemporal dynamics of a spiral tip~phase sin-
gularity! in excitable or oscillatory media@11–13#. While the
spiral tip dynamics in homogeneous excitable media is no
well explored subject, the effects of extrinsic stimuli on t
dynamics of a spiral tip are far less well understood,
though they are of great importance.

From the standpoint of physics, the excitable or osci
tory system under external stimuli is a very interesting d
namical system that can result in a variety of rich and co
plex dynamics@14#. Moreover, understanding the effects
extrinsic stimuli to the natural system would have importa
implications in biology. For instance, a series of recent
perimental and computational studies has discussed the i
actions between pacemaking cells~i.e., external stimuli! and
spiral waves on populations of dictyostelium discoideu
These studies have shown that the interaction can result
particular ‘‘prepattern,’’ which in turn has a significant effe
on the morphogenic development of the colony@10,15,16#.
Also, there might be an important application in cardiolog
It is very well known that spiral waves that form in hea
tissue are closely related to various heart diseases@9#. These
spiral waves, of course, can interact with the pacemak
heart cells. A recent study also indicated that the presenc
abnormal cells in association with spiral waves in heart
sue can result in an abnormally fast heart beat, a deadly h
disease known as tachycardia@17#. Thus it is of interest to
know the physics behind this interaction and the relev
biological implications@18#.

In this article, we investigate the spatiotemporal dynam
of a spiral tip in the presence of a localized extrinsic perio
modulation~i.e., like a pacemaker periodically perturbing th
system!. The modulated tip undergoes very rich spatiote
poral dynamics, exhibiting phenomena of entrainment, m
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locking, multistability, and chaos. Complex nonperiodic s
ral tip trajectories were reported in past studies@19#, but
none of them have characterized the states and the bifu
tions among them. Here, we provide clear analysis on v
ous bifurcations among different tip trajectories, includi
the period-doubling cascade of a resonant tip trajectory.
system differs from those of the earlier studies@14,20–22#,
which focus on the effects of spatially homogeneous mo
lations. In particular, our study is complementary to the
cent work by Petrovet al. @14#, who have studied resonan
patterns in an oscillatory system with global periodic mod
lation in presence. To the best of our knowledge, a rec
study by Rappelet al. @18# is the only report that addresse
the effects of localized modulation. Their study focuses
the feasibility of using a discrete set of stimuli for controllin
the undesirable wave instability that can occur in a set
equations modeling the dynamics of cardiac tissue.

Our model is described in Sec. II. The phenomenon of
period-doubling cascade of a resonant tip trajectory is p
sented in Sec. III, and various resonant states of a spira
trajectory forming a devil’s staircase are discussed in S
IV. The size effect of a modulated region is discussed in S
V, and we conclude in Sec. VI.

II. MODEL

Our study is based on the following two species mode

]U

]t
5F~U,V!1¹2U,

]V

]t
5G~U,V!1¹2V1M ~xo ,yo ,t;A, f m!,

whereF(U,V)5e21U(12U)$U2(V1b)/a% andG(U,V)
5U2V are the kinetic functions andM (x0,y0,t;A, f m)
models a localized periodic modulation.e, a, andb are the
system parameters. Except for the modulation term, the
of equations is a generic two-species reaction-diffus
model proposed earlier by Barkley@23#. The Barkley model
is well known, not only for its efficiency in computation, bu
also for its faithful representation of many essential featu
of excitable systems.
ic
4799 ©2000 The American Physical Society
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The modulation termM (xo ,yo ,t;A, f m) is A sin(2pfmt)
within a small disk region (pr 2) located at (xo ,yo) and 0
elsewhere. The disk is seeded near to a spiral core th
previously created and stabilized. The exact location of
disk is not important as long as it is within one pitch of t
spiral core, since the perturbed spiral core will eventually
attracted and stabilized around the disk region. The dynam
of a spiral tip is investigated by varying the modulation fr
quency f m and the amplitudeA. The radius~r! of a modu-
lated disk is fixed to be three except for those in Sec. V. T
equations, all the variables, and the parameters are in dim
sionless form.

The explicit Euler method is used for a 2003200 square
grid with a no-flux boundary condition. The diffusion term
are evaluated by a finite difference nine-point formula af
computing the reaction terms. The grid size and the~maxi-
mum! temporal step size that we employed areDx50.16 and
Dt50.005, respectively. These values guarantee the num
cal stability @23#. Throughout this article, the distances a
given in units ofDx and the time is given in units of 200Dt.

III. PERIOD-DOUBLING BIFURCATIONS
OF A SPIRAL TIP TRAJECTORY

Figure 1 illustrates three different types of orbits traced
a spiral tip, following a continuous increase inA @24#. Ini-
tially, a particular set of system parameters (e50.005, a
50.33, b50.01) is chosen to produce a simple spiral who
tip rotates steadily along a circle with a natural frequen
f 050.387 931 and radiusr 057.06; see Fig. 1~a!. Upon in-
creasingA with f m fixed, the simply periodic tip become
unstable, moves gradually toward the modulation site, t
stabilizes to execute a quasiperiodic motion following a h

FIG. 1. The unmodulated~a! and the modulated@~b! and ~c!#
spiral tip trajectories in two dimensional space, and the time se
of R(t) corresponding to~c! in ~d!: A50, A50.02, andA50.1 for
~a!, ~b!, and ~c!, respectively. The origin of the coordinate syste
was chosen as the site of modulation~marked with ‘‘x’’ ! and the

spiral tip positionRW (t) is defined as the intersection of the tw
contoursU50.5 andf (U,V)50. A snap shot of a simple spiral (U
field, 96396 domain! is shown in~a! together with its circular tip
trajectory. The modulation frequencyf m is fixed at 0.37. While~b!
and ~c! are to scale,~a! is not to scale with~b! and ~c!.
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pocycloid — a compound orbit of two circular motion
where the primary circle~radius r 1) orbits the secondary
circle ~radiusr 2) with frequencyf 2 and spins about its cente
in the same direction with frequencyf 1 @25#; see Fig. 1~b!.
The rotation frequencyf 1 along the primary circle is locked
to the modulation frequencyf m . For all hypocycloid orbits
that we have examined, there is no evidence of mode lock
as in the earlier studies on the meandering transition of
modulated systems@12#.

With a further increase inA, the hypocycloid orbit again
becomes unstable to form a more complex compound o
around the modulation site; see Fig. 1~c!. The dynamics of
this orbit can be better understood by investigating the ti
evolution ofR(t), the distance between the modulation s
and the position of the tip, since it removes one rotatio
degree of freedom associated with the secondary circular
bit (r 2 , f 2). The time series ofR in Fig. 1~d! shows a com-
posite oscillation with two different frequenciesf 1 and f 3,
wheref 3 is a new frequency independent off 1 and f 2. Thus
we conclude that the complex compound orbit in Fig. 1~c!
consists of three circular motions that lie on a 3-torus. T
example shown in Fig. 1~c! is in particular a resonant stat
with f 3 : f 151:4. The 1:4resonance is clear in the time s
ries of local maximaRn , the return map ofRn , and the
power spectrum ofR(t) in Fig. 2~a!. The bifurcation from
the quasiperiodic 2-torus@Fig. 1~b!# to the resonant state
@Fig. 1~c!# is studied in greater detail and is found to be
saddle-node bifurcation immediately following a hard Ho
bifurcation to a 3-torus; the transition is hysteretic with
small but finite bistable region, as shown in the inset of F
3. Although f 3 locks to f 1 , f 2 does not lock tof 1 in a
rational fraction; thus the resonant orbit is a particular one
a 3-torus with a partial mode locking.

Beyond the 1:4 resonant 3-torus state, we also fin
period-doubling cascade. Somewhere betweenA50.415 and
A50.42, the four resonant lines~in Rn), four points~in re-
turn map ofRn), and peaks@in the power spectrum ofR(t)]
in Fig. 2~a! all double to form a period-doubled 1:4 resona
state @Fig. 2~b!#. When A is further increased, the period
doubled 1:4 resonant state becomes unstable, doubling a
to form the twice-doubled 1:4 resonant state as shown in
2~c!. The subsequent cascade of period doubling ultima
leads to a chaotic state shown in Fig. 2~d!. The bifurcation
diagram shown in Fig. 3 summarizes the hysteretic transi
and the period-doubling cascade.

IV. STRONG RESONANCE

Besides the subharmonic resonant states of 1:4 m
locking, other various resonant states also occur with
smaller value off m ~i.e., further away fromf 0) as shown in
Fig. 4. In addition to the two primary resonances of 1:3 a
1:4, one secondary resonance 2:75(111:314), three ter-
tiary resonances 3:105(112:317), 3:115(211:714),
3:135(112:419), and three fourth-order resonanc
4:135(113:3110), 4:155(311:1114), 4:175(1
13:4113) are evident. The resonant states together for
devil’s staircase as is seen in the well known case of a ci
map. The question of the completeness of the staircas
Fig. 4 remains open due to the limits on our computatio
capability.

s



l-
al

PRE 62 4801COMPLEX DYNAMICS OF A SPIRAL TIP IN THE . . .
FIG. 2. Mode locking and period-doubling
cascade ofRn with increasing value ofA: ~a! 1:4
resonance (P4), A50.1, ~b! period-doubled 1:4
resonance (P8), A50.5, ~c! twice-doubled 1:4
resonance (P16), A50.57, and~d! chaotic state,
A50.8. The first, the second, and the third co
umn, respectively, show time series of loc
maxima Rn of R(t), return maps ofRn , and
power spectra ofR(t). A fixed value of f m

50.37 is used.A is given in log10 scale.
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The bifurcations between resonant states and nearby
resonant states are in general very complex. A detailed
furcation sequence in the vicinity of the 1:3 resonant stat
particular is shown in the inset of Fig. 4 and Fig. 5 sho
some representative phase portraits along the bifurcation
quence. The dashed line in the inset corresponds to the s
quasiperiodic attractor on a 2-torus, the dotted line to
resonant attractor on a 3-torus, and the solid line to the n
resonant attractor on a 3-torus. In the return maps of Fig
the quasiperiodic attractor on a 2-torus appears as a fi
point @the center dot in Figs. 5~a!–5~e!#, the 1:3 resonan
state as a period-3 cycle@Figs. 5~b! and 5~c!#, and the non-
resonant attractor on a 3-torus as a dotted loop@Figs. 5~e!
and 5~f!#. For parameter values ofA between the region 1
and 3, and between 4 and 5, the system is bistable.

The fixed point in Fig. 5~a! is stable and globally attract
ing below point 1. At point 1, a stable period-3 cycle is bo
via a saddle-node bifurcation@Fig. 5~b!#. Subsequently, the
three elements in the period-3 cycle become unstable v
Hopf bifurcation at point 2, forming small element of th
period-3 cycle@Fig. 5~c!#. The corresponding tip dynamic
thus takes place on a 4-torus with an additional frequencf 4
with f 3 still mode locked withf 1. The attractor on 4-torus
loses stability again at point 3 to return to the quasiperio
state on a 2-torus@Fig. 5~d!#. At point 4, a pair of limit cycles
~one stable and the other unstable! are created@Fig. 5~e!#.
The unstable limit cycle shrinks toward the fixed point a
disappears via subcritical Hopf bifurcation at point 5, beyo
which only the nonresonant limit cycle is stable and globa
n-
i-

in
s
e-
ble
e
n-
5,
ed

a

c

d

attracting@Fig. 5~f!#. The transitions at points 4 and 5 a
characteristic of a hard Hopf bifurcation.

Hysteretic transitions are also observed near the onse
other resonance states, but they can be quite different f
that of 1:3 resonant state. For instance, the hysteretic tra
tion at the left end of 1:4 resonance in Fig. 4 is caused by
competition between a resonant and a nonresonant attra
on a 3-torus. Below the point I, only a nonresonant lim
cycle is stable and globally attracting. At point I, a periodic
cycle is created just outside the nonresonant limit cycle v
saddle-node bifurcation. At point II, the nonresonant lim
cycle then disappears, colliding with another unstable lim
cycle. Beyond the point II, the system is completely res
nant.

V. SIZE EFFECT OF THE MODULATION REGION

Beside the modulation frequencyf m and the amplitudeA,
the size of the modulation region can also influence the
namics of a spiral tip. However, we are only considering
effects of a small pacemaker that is about the size of a sp
core or smaller, and our numerical analysis shows that
size of modulationpr 2 simply has a similar role to that ofA
for the relevant physical situation. Figure 6 well confirm
this point.

The mean values ofRn are plotted as a function of log10
(modulation flux5pr 2A) in Fig. 6 for several different val-
ues ofr. The data fit very well to a straight line and the ons
of the Hopf bifurcation of a 2-torus leading to a 1:4 resona
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3-torus occurs at nearly the same value ofmodulation flux
.2.5 andRn.18 for all r but for r 520. This analysis indi-
cates that the relevant bifurcation parameter controlling
dynamics of a spiral tip ismodulation fluxrather thanf m or
A. Only whenr becomes larger than 10 do the dynamics o
spiral tip become qualitatively different. Although explorin
the bifurcation sequence of a spiral tip for large values or
can be an interesting issue, it is outside the scope of
article.

FIG. 3. Bifurcation diagram showing hysteretic transition to 1
resonance and period-doubling cascade. The inset figure show
detail of the hysteresis at the onset of the 1:4 resonant state
3-torus. With increasingA ~filled diamond! the transition occurs a
aboutA50.0854 and with decreasingA ~filled circle! the transition
back to a 2-torus occurs at a smaller value of aboutA50.0845.

FIG. 4. Various resonant states shown in thef 3 / f m vs A plot.

The resonant states withf m / f 353, 31
4 , 31

3 , 31
2 , 32

3 , 33
4 , 4, 41

4 ,

and 41
3 are evident. The resonant~nonresonant! states are marked

with filled circles ~empty triangles!. A fixed value of f m50.355 is
used. The inset illustrates the complex bifurcation sequence sh
ing the breakup of the 1:3 resonant state~discussed in the text!.
e

a

is

VI. SUMMARY AND DISCUSSION

In summary, we have investigated the dynamics of a s
ral tip under a localized extrinsic periodic modulation a
found a wealth of complex attracting states:~1! for small
values of A, the tip executes quasiperiodic motions on
2-torus with no indication of mode locking;~2! for interme-
diate values ofA, the tip either executes quasiperiodic m
tions with three incommensurate frequencies or partia
mode-locked motions on a 3-torus; and~3! for large values
of A, the tip motion ultimately becomes chaotic. Vario
bifurcations are also identified:~1! saddle-node bifurcations
with hysteresis from quasiperiodic motions on a 2-torus le
ing to partially mode-locked states on a 3-torus;~2! the cas-

the
a

w-

FIG. 5. Return maps ofRn along the bifurcation sequenc
shown in the inset of Fig. 4. With an increasing sequence ofA, ~a!
quasiperiodic state on a 2-torus (A50.0920 — before 1!; ~b!
f 3 : f 151:3 resonant state on a 3-torus (A50.0955 — between 1
and 2!; ~c! f 3 : f 151:3 resonant state on a 4-torus (A50.0980 —
between 2 and 3!; ~d! quasiperiodic state on a 2-torus (A50.0985
— between 3 and 4!; ~e! quasiperiodic state on a 3-torus (A
50.0986 — between 4 and 5!; and ~f! quasiperiodic state on a
3-torus (A50.0995 — after 5!. Note that ~b!, ~c!, and ~e! are
bistable. In the map of~d!, some transient flow is included to visu
alize the ‘‘ghost’’ loop. The arrows indicate the directions of flow

FIG. 6. Mean value ofRn vs modulation flux5pr 2A for dif-
ferent radii of the modulation disk.^Rn& is the arithmetic mean of
Rn . The data fit well to a straight lineRn} log10(pr 2A). The 1:4
resonant Hopf bifurcation occurs at the marked position for all d
ferent radii except forradius 520. Themodulation fluxis given in
log10 scale.
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cade of period-doubling bifurcations leading to the chao
motion; and~3! multistability between various attracting o
bits.

In the future, resonant states for different modulation f
quencies will be explored for a complete phase digram sh
ing the structure of Arnold’s tongues. We are also trying
build a low dimensional model that would capture the ess
tial features that are revealed in this article. Finally, we s
gest a relatively simple experiment to confirm our resu
One can use the well known excitable Belousov-Zhabotin
reaction with a light-sensitive catalyst such as t
n

e

nc

v

c

-
-

-
-
.
y

Ruthenium-bipyridil complex@20,14# in a continuously fed
reactor; the localized sinusoidal modulation can be given
a tightly focused laser beam whose intensity is modulated
time.

ACKNOWLEDGMENTS

We are indebted to J. S. Lee for many helpful discussio
This work was supported by the Creative Research Ini
tives of the Korean Ministry of Science and Technology.
in,

ci.

.

by

ted
y

@1# S. Jakubith, H. H. Rotermund, W. Engel, A. von Oertzen, a
G. Ertl, Phys. Rev. Lett.65, 3013~1990!.

@2# E. Bodenschatz, J. de Bruyn, G. Ahlers, and D. S. Cann
Phys. Rev. Lett.67, 3078~1991!.

@3# K. B. Migler and R. B. Meyer, Phys. Rev. Lett.66, 1485
~1991!; K. B. Migler and R. B. Meyer, Physica D71, 412
~1994!.

@4# P. Umbanhowar, F. Melo, and H. L. Swinney, Physica A1, 1
~1997!.

@5# A. N. Zaikin and A. M. Zhabotinsky, Nature~London! 225,
535 ~1970!.

@6# A. T. Winfree, Science181, 937 ~1973!.
@7# Chemical Waves and Patterns, edited by R. Kapral and K.

Showalter~Kluwer, Dordrecht, 1995!.
@8# L. Lechleiter, S. Girard, E. Peralta, and D. Clapham, Scie

252, 123 ~1991!.
@9# L. Glass, Phys. Today49~8!, 40 ~1996!.

@10# K. J. Lee, E. C. Cox, and R. E. Goldstein, Phys. Rev. Lett.76,
1174 ~1996!.

@11# A. T. Winfree, Chaos1, 303 ~1991!.
@12# D. Barkley, Phys. Rev. Lett.72, 164 ~1994!.
@13# G. Li, Q. Ouyang, V. Petrov, and H. L. Swinney, Phys. Re

Lett. 77, 2105~1996!, and references therein.
@14# V. Petrov, Q. Ouyang, and H. L. Swinney, Nature~London!

388, 655 ~1997!; A. Lin et al., in Pattern Formation in Con-
tinuous and Coupled Systems, edited by M. Golubitsky, D.
d

ll,

e

.

Luss, S. H. Strogatz~Springer, New York, 1999!.
@15# K. J. Lee, Phys. Rev. Lett.79, 2907~1997!.
@16# E. Pálsson, K. J. Lee, R. E. Goldstein, J. Franke, R. H. Kess

and E. C. Cox, Proc. Natl. Acad. Sci. U.S.A.94, 13 719
~1997!.

@17# D. P. Zipes and J. Jalife,Cardiac Electrophysiology: From
Cell to Bedside~W. B. Saunders, Philadelphia, 1995!.

@18# W. Rappel, F. Fenton, and A. Karma, Phys. Rev. Lett.83, 456
~1999!.

@19# W. Jahnke and A. Winfree, Int. J. Bifurcation Chaos Appl. S
Eng.1, 445 ~1991!.

@20# O. Steinbock, V. Zykov, and S. C. Mu¨ller, Nature~London!
366, 322 ~1993!.
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