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Complex dynamics of a spiral tip in the presence of an extrinsic local modulation
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With a generic model excitable system, we have investigated the spatio-temporal dynamics of a spiral tip in
the presence of an extrindicalizedperiodic modulation. The tip of a modulated spiral does exhibit a variety
of different trajectories depending on the strength and the frequency of the modulation. Its motion can be
quasiperiodic on a 2-torus, quasiperiodic or mode locked on a 3-torus, or fully chaotic. Various bifurcations,
including hard Hopf bifurcations and saddle-node bifurcations at strong resonances and period-doubling bifur-
cations of a mode-locked 3-torus, are revealed. In particular, the phenomenon of the period-doubling cascade
of a resonant spiral tip trajectory is reported.

PACS numbgs): 05.45.Ac, 82.40.Ck, 82.20.Wt, 82.40.Bj

[. INTRODUCTION locking, multistability, and chaos. Complex nonperiodic spi-
ral tip trajectories were reported in past studjd§], but
Rotating spiral waves are ubiquitous in nature and haveone of them have characterized the states and the bifurca-
long elicited the attention of researchers in a variety of dif-tions among them. Here, we provide clear analysis on vari-
ferent disciplines, including physi¢&—4], chemistry[5—7], ous bifurcations among different tip trajectories, including
and biology[8—10]. Among others, of particular interest has the period-doubling cascade of a resonant tip trajectory. Our
been the spatiotemporal dynamics of a spiral(fipase sin- system differs from those of the earlier studjég,20-23,
gularity) in excitable or oscillatory medi@ 1-13. While the ~ which focus on the effects of spatially homogeneous modu-
spiral tip dynamics in homogeneous excitable media is now &tions. In particular, our study is complementary to the re-
well explored subject, the effects of extrinsic stimuli on thecent work by Petrowet al. [14], who have studied resonant
dynamics of a spiral tip are far less well understood, al-Patterns in an oscillatory system with global periodic modu-
though they are of great importance. lation in presence. To the best of our knowledge, a recent

From the standpoint of physics, the excitable or oscilla-Study by Rappeét al [18] is the only report that addresses
tory System under external stimuli is a very interesting dy-the effects of localized modulation. Their StUdy focuses on
namical system that can result in a variety of rich and comihe feasibility of using a discrete set of stimuli for controlling
plex dynamicq14]. Moreover, understanding the effects of the undesirable wave instability that can occur in a set of
extrinsic stimuli to the natural system would have importantequations modeling the dynamics of cardiac tissue.
implications in biology. For instance, a series of recent ex- Our model is described in Sec. Il. The phenomenon of the
perimental and computational studies has discussed the intg?eriod-doubling cascade of a resonant tip trajectory is pre-
actions between pacemaking cdil®., external stimujiand sented in Sec. Ill, and various resonant states of a spiral tip
spiral waves on populations of dictyostelium discoideum trajectory forming a devil's staircase are discussed in Sec.
These studies have shown that the interaction can result inl¥. The size effect of a modulated region is discussed in Sec.
particular “prepattern,” which in turn has a significant effect V, and we conclude in Sec. VI.
on the morphogenic development of the coldi®,15,184.

Also, there might be an important application in cardiology. Il. MODEL

It is very well known that spiral waves that form in heart
tissue are closely related to various heart disef&ed hese
spiral waves, of course, can interact with the pacemaking U
heart cells. A recent study also indicated that the presence of —=F(U,V)+VaU,
abnormal cells in association with spiral waves in heart tis- ot
sue can result in an abnormally fast heart beat, a deadly heart
disease known as tachycardib?]. Thus it is of interest to
know the physics behind this interaction and the relevant
biological implicationg 18].

In this article, we investigate the spatiotemporal dynamicsvhereF (U,V)=¢e 1U(1—U){U—(V+b)/a} andG(U,V)
of a spiral tip in the presence of a localized extrinsic periodic=U—V are the kinetic functions and (xq,Yo,t;A,f)
modulation(i.e., like a pacemaker periodically perturbing the models a localized periodic modulatioa. a, andb are the
system. The modulated tip undergoes very rich spatiotem-system parameters. Except for the modulation term, the set
poral dynamics, exhibiting phenomena of entrainment, modef equations is a generic two-species reaction-diffusion

model proposed earlier by Barkl¢23]. The Barkley model
is well known, not only for its efficiency in computation, but
* Author to whom correspondence should be addressed. Electron&lso for its faithful representation of many essential features
address: kyoung@nld.korea.ac.kr of excitable systems.

Our study is based on the following two species model:

N
HzG(U,V)+V2V+ M (Xo,Yo t;A, T ),
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pocycloid — a compound orbit of two circular motions,

a) b) where the primary circl€radiusr;) orbits the secondary
/ \ circle (radiusr ,) with frequencyf, and spins about its center
‘ ‘ in the same direction with frequendy [25]; see Fig. 1b).
\ ‘ The rotation frequency, along the primary circle is locked
) to the modulation frequencf,. For all hypocycloid orbits

that we have examined, there is no evidence of mode locking
as in the earlier studies on the meandering transition of un-
modulated systemid 2].

With a further increase i\, the hypocycloid orbit again
becomes unstable to form a more complex compound orbit
around the modulation site; see Figcll The dynamics of
this orbit can be better understood by investigating the time
evolution of R(t), the distance between the modulation site
and the position of the tip, since it removes one rotational

20 40 60 degree of freedom associated with the secondary circular or-
time bit (r,, f,). The time series oR in Fig. 1(d) shows a com-
posite oscillation with two different frequencidg and f 5,
\évheref3 is a new frequency independentfgfandf,. Thus
we conclude that the complex compound orbit in Fi¢e)1
consists of three circular motions that lie on a 3-torus. The
example shown in Fig.(t) is in particular a resonant state
with f5:f;=1:4. The 1:4resonance is clear in the time se-

N

2N

=

S
77z

7

FIG. 1. The unmodulate¢a) and the modulatedi(b) and (c)]
spiral tip trajectories in two dimensional space, and the time serie
of R(t) corresponding tdc) in (d): A=0, A=0.02, andA=0.1 for
(@, (b), and(c), respectively. The origin of the coordinate system
was chosen as the site of modulationarked with “x”) and the

spiral tip positionﬁ(t) is defined as the intersection of the two . .
contoursU = 0.5 andf(U,V)=0. A snap shot of a simple spirall( ries of local maximaR,, the return map oR,, and the

field, 96x 96 domain is shown in(a) together with its circular tip POWer spectrum oR(t) in Fig. 2a). The bifurcation from
trajectory. The modulation frequendy, is fixed at 0.37. Whilgb) ~ the quasiperiodic 2-torufFig. 1(b)] to the resonant state
and (c) are to scale(a) is not to scale with(b) and (c). [Fig. 1(c)] is studied in greater detail and is found to be a
saddle-node bifurcation immediately following a hard Hopf
The modulation termM (X, .Y, t;A,fy) is Asin(2af ) bifurcation.tc_) a _3—torus; the transition is_hyste(etic with_a
within a small disk region £r2) located at X, ,y,) and 0 small but finite bistable region, as shown in the inset of Fig.
elsewhere. The disk is seeded near to a spiral core that & Although f5 locks to f;, f, does not lock tof; in a
previously created and stabilized. The exact location of théational fraction; thus the resonant orbit is a particular one on
disk is not important as long as it is within one pitch of the & 3-torus with a partial mode locking. .
spiral core, since the perturbed spiral core will eventually be Beyond the 1:4 resonant 3-torus state, we also find a
attracted and stabilized around the disk region. The dynamidaeriod-doubling cascade. Somewhere betw&er0.415 and
of a spiral tip is investigated by varying the modulation fre- A=0.42, the four resonant linés R,), four points(in re-
quencyf,, and the amplitude\. The radius(r) of a modu-  turn map ofR,), and peaksin the power spectrum dr(t)]
lated disk is fixed to be three except for those in Sec. V. Thdn Fig. 2@) all double to form a period-doubled 1:4 resonant

equations, all the variables, and the parameters are in dimeftate[Fig. 2b)]. When A is further increased, the period-
sionless form. doubled 1:4 resonant state becomes unstable, doubling again

The explicit Euler method is used for a 20Q00 square to form the twice-doubled 1:4 resonant state as shown in Fig.

grid with a no-flux boundary condition. The diffusion terms 2(C). The subsequent cascade of period doubling ultimately
are evaluated by a finite difference nine-point formula aftef€ads to a chaotic state shown in FigdR The bifurcation
computing the reaction terms. The grid size and (inexi- diagram shown in Fig. 3 summarizes the hysteretic transition
mum) temporal step size that we employed Ave=0.16 and  and the period-doubling cascade.

At=0.005, respectively. These values guarantee the numeri-

cal stability [23]. Throughout this article, the distances are IV. STRONG RESONANCE

given in units ofAx and the time is given in units of 20Q.
Besides the subharmonic resonant states of 1:4 mode

locking, other various resonant states also occur with a
smaller value off,, (i.e., further away fronf,) as shown in
Fig. 4. In addition to the two primary resonances of 1:3 and
Figure 1 illustrates three different types of orbits traced byl:4, one secondary resonance 2:(/L+1:3+4), three ter-
a spiral tip, following a continuous increase An[24]. Ini-  tiary resonances 3:¥)(1+2:3+7), 3:11=(2+1:7+4),
tially, a particular set of system parameters=0.005,a  3:13=(1+2:4+9), and three fourth-order resonances
=0.33,b=0.01) is chosen to produce a simple spiral whose4:13=(1+3:3+10), 4:15=(3+1:11+4), 4:17=(1
tip rotates steadily along a circle with a natural frequency+ 3:4+13) are evident. The resonant states together form a
fy=0.387931 and radiusy="7.06; see Fig. (). Upon in-  devil's staircase as is seen in the well known case of a circle
creasingA with f, fixed, the simply periodic tip becomes map. The question of the completeness of the staircase of
unstable, moves gradually toward the modulation site, thefrig. 4 remains open due to the limits on our computational
stabilizes to execute a quasiperiodic motion following a hy-capability.

I1l. PERIOD-DOUBLING BIFURCATIONS
OF A SPIRAL TIP TRAJECTORY
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The bifurcations between resonant states and nearby noattracting[Fig. 5f)]. The transitions at points 4 and 5 are
resonant states are in general very complex. A detailed bieharacteristic of a hard Hopf bifurcation.
furcation sequence in the vicinity of the 1:3 resonant state in Hysteretic transitions are also observed near the onset of
particular is shown in the inset of Fig. 4 and Fig. 5 showsother resonance states, but they can be quite different from
some representative phase portraits along the bifurcation séhat of 1:3 resonant state. For instance, the hysteretic transi-
guence. The dashed line in the inset corresponds to the stalilen at the left end of 1:4 resonance in Fig. 4 is caused by the
quasiperiodic attractor on a 2-torus, the dotted line to theeompetition between a resonant and a nonresonant attractor
resonant attractor on a 3-torus, and the solid line to the noren a 3-torus. Below the point I, only a nonresonant limit
resonant attractor on a 3-torus. In the return maps of Fig. Sycle is stable and globally attracting. At point |, a periodic-4
the quasiperiodic attractor on a 2-torus appears as a fixeglcle is created just outside the nonresonant limit cycle via a
point [the center dot in Figs. (8—-5(e)], the 1:3 resonant saddle-node bifurcation. At point Il, the nonresonant limit
state as a period-3 cyc[&igs. §b) and Jc)], and the non- cycle then disappears, colliding with another unstable limit
resonant attractor on a 3-torus as a dotted Igeigs. Se) cycle. Beyond the point Il, the system is completely reso-
and 5f)]. For parameter values @ between the region 1 nant.
and 3, and between 4 and 5, the system is bistable.
. The fixed point in Fig. B) is stable anq globally at'tract— V. SIZE EFFECT OF THE MODULATION REGION
ing below point 1. At point 1, a stable period-3 cycle is born
via a saddle-node bifurcatidirig. 5(b)]. Subsequently, the Beside the modulation frequendy, and the amplitudé,
three elements in the period-3 cycle become unstable via the size of the modulation region can also influence the dy-
Hopf bifurcation at point 2, forming small element of the namics of a spiral tip. However, we are only considering the
period-3 cycle[Fig. 5(c)]. The corresponding tip dynamics effects of a small pacemaker that is about the size of a spiral
thus takes place on a 4-torus with an additional frequdpcy core or smaller, and our numerical analysis shows that the
with f5 still mode locked withf,. The attractor on 4-torus size of modulatiorwrr? simply has a similar role to that @
loses stability again at point 3 to return to the quasiperiodidor the relevant physical situation. Figure 6 well confirms
state on a 2-toruig=ig. 5(d)]. At point 4, a pair of limit cycles  this point.
(one stable and the other unstagbége createdFig. 5(e)]. The mean values dR, are plotted as a function of lgg
The unstable limit cycle shrinks toward the fixed point and(modulation flux= 7r2A) in Fig. 6 for several different val-
disappears via subcritical Hopf bifurcation at point 5, beyondues ofr. The data fit very well to a straight line and the onset
which only the nonresonant limit cycle is stable and globallyof the Hopf bifurcation of a 2-torus leading to a 1:4 resonant
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181 FIG. 5. Return maps oR, along the bifurcation sequence
shown in the inset of Fig. 4. With an increasing sequenca, ¢f)
guasiperiodic state on a 2-toruf\€0.0920 — before % (b)

) A f5:f;=1:3 resonant state on a 3-toru&<£0.0955 — between 1
12 1 . R I and 2; (c) f3:f;=1:3 resonant state on a 4-torus=0.0980 —

0.1 A 1 between 2 and)3 (d) quasiperiodic state on a 2-torud£0.0985
— between 3 and ¥ (e) quasiperiodic state on a 3-torus (

FIG. 3. Bifurcation diagram showing hysteretic transition to 1:4 =0.0986 — between 4 and);5and (f) quasiperiodic state on a
resonance and period-doubling cascade. The inset figure shows tReorus A=0.0995—after 5 Note that(b), (c), and (e) are
detail of the hysteresis at the onset of the 1:4 resonant state onhistable. In the map ofd), some transient flow is included to visu-
3-torus. With increasing (filled diamond the transition occurs at alize the “ghost” loop. The arrows indicate the directions of flow.
aboutA=0.0854 and with decreasiry(filled circle) the transition
back to a 2-torus occurs at a smaller value of abfost0.0845. VI. SUMMARY AND DISCUSSION

. In summary, we have investigated the dynamics of a spi-
3-torus occurs at nearly the same valuenggdulation flux g tip under a localized extrinsic periodic modulation and
=2.5 andR,=18 for allr but for r=20. This analysis indi- found a wealth of complex attracting staté4) for small
cates that the relevant bifurcation parameter controlling thgajues of A, the tip executes quasiperiodic motions on a
dynamics of a spiral tip isnodulation fluxrather thanf, or  2-torus with no indication of mode locking2) for interme-

A. Only whenr becomes larger than 10 do the dynamics of adiate values ofA, the tip either executes quasiperiodic mo-
spiral tip become qualitatively different. Although exploring tions with three incommensurate frequencies or partially
the bifurcation sequence of a spiral tip for large values of mode-locked motions on a 3-torus; a(®) for large values

can be an interesting issue, it is outside the scope of thief A, the tip motion ultimately becomes chaotic. Various

article. bifurcations are also identifiedl) saddle-node bifurcations
with hysteresis from quasiperiodic motions on a 2-torus lead-
45 ing to partially mode-locked states on a 3-tor(); the cas-
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FIG. 4. Various resonant states shown in faéfr, vs A plot. FIG. 6. Mean value oR,, vs modulation flux=7r2A for dif-

The resonant states with,/f3=3, 33, 33, 37, 33, 33, 4, 47, ferent radii of the modulation diskR,) is the arithmetic mean of
and 45 are evident. The resonafitonresonantstates are marked R,. The data fit well to a straight linR,o<log, (7t 2A). The 1:4
with filled circles (empty triangles A fixed value off ,=0.355 is  resonant Hopf bifurcation occurs at the marked position for all dif-
used. The inset illustrates the complex bifurcation sequence showerent radii except foradius =20. Themodulation fluxis given in

ing the breakup of the 1:3 resonant stédescussed in the text log,o scale.
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cade of period-doubling bifurcations leading to the chaoticRuthenium-bipyridil compleX20,14] in a continuously fed

motion; and(3) multistability between various attracting or- reactor; the localized sinusoidal modulation can be given by

bits. a tightly focused laser beam whose intensity is modulated in
In the future, resonant states for different modulation fre-time.

guencies will be explored for a complete phase digram show-

ing the structure of Arnold’s tongues. We are also trying to

build a low dimensional model that would capture the essen- ACKNOWLEDGMENTS

tial features that are revealed in this article. Finally, we sug-
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